Journal of Organometallic Chemistry, 201 (1980) 113–121 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE CONFORMATIONS OF N-SUBSTITUTED 2,2-DIARYL-1,3-DIOXA-6-AZA-2-SILACYCLOOCTANES IN SOLUTION *

E. LIEPINS, J. POPELIS, I. BIRGELE, I. URTANE, G. ZELCHAN and E. LUKEVICS * Institute of Organic Synthesis, Latvian Academy of Sciences, Riga (U.S.S.R.) (Received April 22nd, 1980)

Summary

¹H, ¹³C and ²⁹Si NMR data obtained for 2,2-diaryl-1,3-dioxa-6-aza-2-silacyclooctanes Ar₂Si(OCH₂CH₂)₂NR indicate the occurrence in solution of an equilibrium between the conformations boat-boat \Rightarrow chair-chair which are determined by the presence or absence of a transannular N \rightarrow Si bond. The equilibrium is greatly affected by the electronic and steric effects of the Nand Si-substituents.

Introduction

The molecules of silicon-containing diethanolamine esters $\mathbb{R}^1\mathbb{R}^2\mathrm{Si}(\mathrm{OCH}_2\mathrm{CH}_2)_2$. NR (I) exist in the crystalline state in the boat-boat conformation, allowing the formation of a N \rightarrow Si transannular bond, as revealed by recent X-ray studies [1-4].²⁹Si NMR spectra of N-methyl and N-unsubstituted derivatives of 2,2-diphenyl-1,3-dioxa-6-aza-2-silacyclooctane (I, $\mathbb{R} = H$, CH_3 ; \mathbb{R}^1 , $\mathbb{R}^2 = \mathrm{C}_6\mathrm{H}_5$) show a diamagnetic shift with respect to diphenyldiethoxysilane. In addition, ¹H resonances of the N-methyl protons are shifted to higher field values. These results were regarded as a possible indication of a donor-acceptor (DA) N \rightarrow Si bond present in the solution [5-6]. However, no systematic NMR investigation of I has been reported so far.

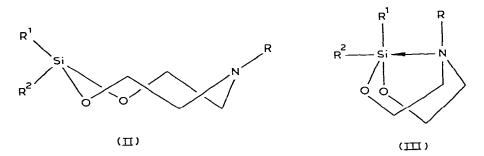
Our objective was to study by NMR the conformations of N-substituted 2,2-diaryl-1,3-dioxa-6-aza-2-silacyclooctanes (I, \mathbb{R}^1 , $\mathbb{R}^2 = Ar$) and to examine factors affecting DA N \rightarrow Si bond formation in solution. ¹H, ¹³C and ²⁹Si NMR spectra have been obtained for these compounds (Tables 1–4).

Two extreme conformations: chair-chair (CC, II) exhibiting no $N \rightarrow Si$ inter-

^{*} Dedicated to Prof. G.A. Razuvaev on the occasion of his 85th birthday on August 23rd, 1980.

الموافقية المحاورين ومنادقة بالمحافظة فالمحادث والمحافية والمحافظة فالمحاوية والعامة والمحافية المحافة							
Formula	0CH2	NCH2	α-CH2	β-CH2	γ-CII2	6-CH2	SiR
(HOCH ₂ CH ₂) ₂ NII	3,69	2.76	I	-	ł		
(HOCH ₂ CH ₂) ₂ NCH ₃	3.65	2.57	2.29	I	1	I	ł
(HOCH2CH2)2NC2H5	3.60	2.63	2.61	1.03	1	ł	1
(HOCH2CH2)2NC3H7n	3.60	2.63	2.49	1.47	1.88	ł	۱
(HOCH ₂ CH ₂) ₂ NC ₄ H ₉ -n	3.60	2.64	2.63	1.60	1.80	16.0	1
(HOCH ₂ CH ₂) ₂ NC ₄ II ₉ -t	3.46	2.69	I	1.08	1	ł	I
(C ₆ H ₅) ₂ Si(OCH ₂ CH ₂) ₂ NH	3.92	2,83	1	ł	1	ł	7.20-7.60
(C ₆ H ₅) ₂ Si(OCH ₂ CH ₂) ₂ NCH ₃	3,98	2.58	1,65	I	1	ł	7.20-7.60
(4-CH ₃ C ₆ H ₄) ₂ Si(OCH ₂ CH ₂) ₂ NCH ₃	3.94	2.69	1.77	I	١	1	7.08, 7.47 (C ₆ H ₄)
							2.27 (CH ₃)
(4-ClC ₆ H ₄) ₂ Si(0CH ₂ CH ₂) ₂ NCH ₃	3.97	2,69	1,64	1	1	ł	7.27, 7.47 (C ₆ H ₄)
(2-C4H ₃ O) ₂ Si(OCH ₂ CH ₂) ₂ NCII ₃	3.87	2.67	1.85	I	I	ł	6.61 (H ₃);6,3 (H ₄)
							7.53 (H ₅)
(C ₆ H ₅) ₂ Si(0CH ₂ CH ₂) ₂ NC ₂ H ₅	3.97	2.64	2.01	0,62	١	1	7.20-7.60
(C ₆ H ₅) ₂ Si(OCH ₂ CH ₂) ₂ NC ₃ H ₇ n	3,96	2,66	1.92	1.50	0.59	ł	7.20-7.60
(C ₆ H ₅) ₂ Si(OCH ₂ CH ₂) ₂ NC ₄ H ₉ ·n	3.96	2.65	1.94	1.60	1.80	0.77	7.20-7.60
(C ₆ H ₅) ₂ Si(OCH ₂ CH ₂) ₂ NC ₄ H ₉ -t	3,99	2.71	ł	0.80	١	ł	7,20-7,60

¹H CHEMICAL SHIFTS FOR DIETHANOLAMINES AND THEIR CYCLIC ORGANOSILICON ESTERS I AT 30°C (ppm)


TABLE 1

R	oc	NC	CR			
			α	β	γ	δ
	61.0	51.9		_		-
H ₃	60.3	59.7	42.9	_	-	—
2H5	60.2	56.4	49.0	11.9		
-C ₃ H ₇	60.2	57.0	57.6	20.5	12.2	
1-C4H9	60.2	56.9	55.3	29.5	21.1	14.5
-C4H9	62.6	53.1	55.3	27.4		_

 TABLE 2

 ¹³C CHEMICAL SHIFTS FOR (HOCH₂CH₂)₂NR AT 30°C (ppm)

action and boat-boat (BB, III) with the transannular $N \rightarrow Si$ bond are conceivable for the title compounds.

Transannular N \rightarrow Si bonding is supported by the fact that ¹⁵N chemical shifts are correlated with the total sum of induction constants of the Si-substituents ($\Sigma \sigma^*$), a topic to be specifically treated elsewhere.

Results and discussion

In comparison with the model N-substituted diethanolamines, the ¹H and ¹³C spectra of dioxaazasilacyclooctanes fail to demonstrate such remarkable resonance shifts for the NCH₂ group on the ring (Tables 1-3) as, for example, in the case of silatranes [7]. This may be indicative either of insignificant charge transfer along the N \rightarrow Si bond or of the existence of a conformational equilibrium (CC \Rightarrow BB) shifted to the CC form. Alternatively, the ¹H resonance of the NR substituent is displaced toward higher field with respect to the model amino alcohol (Table 1), implying close proximity of the NR and SiAr₂ groups and suggesting that the BB conformation constitutes a considerable portion in the solution. At lower temperatures the resonance absorption of NR-protons is displaced to higher field values as a result of still closer proximity of these two groups. Such temperature-dependent changes in the ¹H spectra provide direct evidence for the existence of a conformational equilibrium (CC \Rightarrow BB) for molecules of I in solution. Furthermore, considerable displacement of the resonance toward higher fields noted for $SiAr_2$ group ortho-protons at low temperatures also suggests increased share in the solution of the conformer

Ar	ч	00	NC	c_{R}				٨r				Remaining
				ъ,	β	۲	8	ca	c _m	co	cp	groups
C ₆ H ₅	Н	63.8	49.0	ł	1	1	1	135,1	128.3	134.7	129.7	
C ₆ H ₅	CH ₃	61.9	55.9	42.6	l	1	١	139,3	128.1	134.1	129.1	
4-CH ₃ C ₆ H ₄	CH ₃	62.2	56.7	43.1	I	ł	I	138,8	128.9	134,4	135.2	21.9 (CH ₃)
4-CIC6H4	CH ₃	61.8	55.8	42.7	ł	I	ł	137.7	128.4	135.4	128.8	•
2.C4H30	CH ₃	61.5	56.7	41,9	1	1	1	159.6 (C ₂)	120.1 (C ₃)	109,8 (C4)	146.1 (C _S)	
C ₆ H ₅	C2H5	63.1	43.5	48.8	9.8	ł	ł	138.3	128.2	134.5	129.5	
C ₆ H ₅	n-C ₃ H ₇	63,1	64.2	57.5	18.3	12,2	l	138,1	128.1	134,6	129.5	
C ₆ H ₅	n-C4H9	63.1	54.3	55,5	27.4	21.1	14,4	138,1	128.2	134,6	129.5	
C ₆ H ₅	t-C4H9	66.1	52.3	55.9	27.0	1	۱	136.3	128.2	135.2	130,2	
(C ₆ H ₅) ₂ Si(OC ₂ H ₅) ₂		59.4	ł	1	ł	I	ł	134.0	128.4	135,5	130.8	18.8 (CH ₃)
(C ₆ H ₅) ₂ Si(OCH ₂ CH ₂ NM ₂) ₂		62.2	61.9	ł	ł	1	ł	133.6	128.4	135,6	130.8	46.6 (NCH ₃)
(2-C4H ₃ O) ₂ Si(OC ₂ H ₅) ₂		6.93	1	ļ	۱	ł	1	153.0 (C ₂)	124.0 (C ₃)	109.8 (C4)	147.9 (C ₅)	18.6 (CH ₃)
(4-ClC ₆ H ₄) ₂ Si(OC ₂ II ₅) ₂		69.6	ı	I	۱	1	I	137.5	128.8	136.9	131,9	18.7 (CH ₃)

TABLE 3 ¹³C CHEMICAL SHIFTS FOR (Ar)₃SK(OCH₃CH₃)₂NR AND MODEL COMPOUNDS AT 30°C (ppm)

Ar	R	δ29 _{Si}	
C ₆ H ₅	н	-44.7	
C ₆ H ₅	CH ₃	-43.9	
4-CH ₃ C ₆ H ₄	CH ₃	-41.5	
4-CIC ₆ H ₄	CH ₃	-47.0	
2-C4H3O	CH ₃	69.4	
C ₆ H ₅	C ₂ H ₅	-40.0	
C ₆ H ₅	n-C3H7	39.6	
C ₆ H ₅	n-C4H9	39.6	
C ₆ H ₅	t-C ₄ H ₉	-35.2	
$(C_6H_5)_2Si(OC_2H_5)_2$		32.4	
$(C_6H_5)_2Si[OCH_2CH_2N(CH_3)_2]_2$		-31.6	
$(2-C_4H_3O)_2Si(OC_2H_5)_2$		50.6	
(4-ClC ₆ H ₄) ₂ Si(OC ₂ H ₅) ₂		33.4	

²⁹Si CHEMICAL SHIFTS FOR (Ar)₂Si(OCH₂CH₂)₂NR AT 30°C (ppm)

TABLE 4

carrying the transannular $N \rightarrow Si$ bond. In the case of strong acceptors at the silicon atom (Ar = 2-furyl, 4-chlorophenyl) signals from both aryl groups located equatorially and axially in the trigonal bipyramid can be observed in ¹H and ¹³C spectra at -60°C (Fig. 1), with no evidence, however, of the CC conformation. In ²⁹Si NMR spectra at -60°C a single signal is observed which is displaced by 6-7 ppm to higher field as compared with the corresponding signal obtained at room temperature. These results suggest a complete shift of the equilibrium to the BB conformation in the case of Ar = 2-furyl, '4-chlorophenyl at low temperature. The signals from two aryl groups present in ¹H and ¹³C spectra demonstrate the occurrence of I in CDCl₃ solution predominantly in conformation.

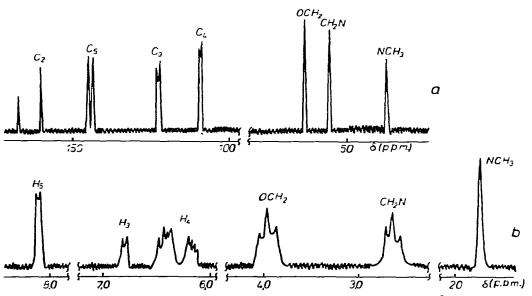


Fig. 1. NMR spectra of 2,2-di(2'-furyl)-1,3-dioxa-6-aza-2-silacyclooctane at 215 K: ^{13}C (a), ^{1}H (b).

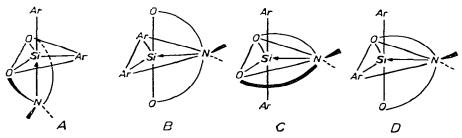


Fig. 2. Possible trigonal bipyramidal conformations of 2,2-diaryl-1,3-dioxa-6-aza-2-silacyclooctanes.

tion A, but not B or C. Conformation D is rejected on the basis of identity of 1 H and 13 C chemical shifts registered for the two OCH₂CH₂N fragments at low temperatures (Fig. 2).

The free enthalpy of activation (ΔG_c^{\neq}) estimated at the temperature of signal coalescence of 2-furyl groups is 11.6 kcal/mol. This value is significantly lower than that obtained by the same process for $R_2Sn(XCH_2CH_2)_2NCH_3$ [8]. We have estimated the enthalpy and entropy changes upon transition from CC to BB conformation along with the conformational equilibrium constants at +30°C (Table 5) on the basis of the temperature-dependence of the ¹H resonance of *ortho*-protons in the SiAr₂ group. The values of equilibrium constants demonstrate that increased donor capacity of Si-substituents and greater size of N-substituents result in the shift of the equilibrium to CC conformation.

In the ¹³C spectra the signal of the *para*-carbon in the phenyl cycle is considerably displaced to higher field values, as compared with the model compounds $Ph_2Si(OEt)_2$ and $Ph_2Si(OCH_2CH_2NMe_2)_2$. This displacement being less pronounced in the N—H and N—t-butyl derivatives provides further evidence for a smaller proportion in solution of the coordinated form, in agreement with the data summarized in Table 5.

The more negative values of the chemical shifts observed for ²⁹Si NMR spectra (Table 4) of I in comparison with the model compounds $Ph_2Si(OEt)_2$ and $Ph_2Si(OCH_2CH_2NMe_2)_2$ may be due to (1) the occurrence of $CC \Rightarrow BB$ equilibrium, (2) the altered total sum of charges at the silicon atom coordinated with nitrogen atom in the BB conformation, (3) the effects of the

THERMODYNAMIC PARAMETERS OF $CC = BB$ CONFORMATIONAL EQUILIBRIUM FOR	
(Ar) ₂ Si(OCH ₂ CH ₂) ₂ NR	

Ar	R	$-\Delta H$ (kcal/mol)	$-\Delta S$ (e.u.)	^k 303°K	
C ₆ H ₅	н	6.7 ± 1.6	24.6 ± 5.7	0.36	
C ₆ H ₅	CH3	1.8 ± 0.1	6.1 ± 0.3	0.96	
4-CH ₃ C ₆ H ₄	CH ₃	2.4 ± 0.2	10.4 ± 0.7	0.31	
4-ClC ₆ H ₄	CH ₃	1.7 ± 0.2	4.2 ± 0.8	1.44	
2-C4H3O	CH ₃	2.6 ± 0.1	6.3 ± 1.5	3.20	
C ₆ H ₅	C ₂ H ₅	2.2 ± 0.1	7.5 ± 0.5	0.83	
C ₆ H ₅	n-C3H7	2.7 ± 0.2	8.6 ± 0.6	1.11	
C ₆ H ₅	n-C4H9	2.4 ± 0.2	7.9 ± 0.6	1.06	
C ₆ H ₅	t-C4H9	6.9 ± 2.1	20.7 ± 8.0	0.54	

TABLE 5

geometry of the BB conformation. In as much as the substituents at silicon in the title compounds remain the same, variation in the silicon charge may be neglected. The $CC \Rightarrow BB$ equilibrium was estimated using equilibrium constants determined from ¹H NMR spectra according to the formulas:

$$\Delta \delta_{\mathrm{Si}}^{0} = \frac{1+k}{k} \Delta \delta_{\mathrm{Si}};$$

$$\Delta \delta_{\mathrm{Si}}^{0} = \delta_{\mathrm{Si}}^{\mathrm{c}} - \delta_{\mathrm{Si}}^{\mathrm{nc}};$$

$$\Delta \delta_{\mathrm{Si}} = \delta_{\mathrm{Si}}^{\mathrm{ob}} - \delta_{\mathrm{Si}}^{\mathrm{nc}};$$

where $\delta_{Si}^{nc} = {}^{29}Si$ chemical shift for a noncoordinated form (in this particular case model compound Ph₂Si(OCH₂CH₃)₂; $\delta_{Si}^{ob} =$ observed chemical shift for a compound; $\delta_{Si}^{c} =$ chemical shift for a compound in BB conformation, k = equilibrium constant.

The values of $\Delta \delta_{Si}^0$ and the corresponding values for para-carbon $\Delta \delta_{Cp}^0$ calculated according to this method are summarized in Table 6. Reliability of $\Delta \delta_{Si}^0$ values can be verified using ²⁹Si NMR spectra at low temperature when the compound exists exclusively in the coordinated form. The experimentally found value of $\Delta \delta_{Si}^0$ for the di(2-furyl)-6-methyl derivative is -24.6 ppm, the calculated value being -24.7 ppm.

The data presented in Table 4 must be directly linked with changes in the silicon coordination number. As the obtained $\Delta \delta_{Si}^0$ values diminish in the N-substituent series from H to tert-butyl it can be surmised that in the complexed form, silicon hybridization, and consequently N \rightarrow Si bond length, would vary with different N-substituents. This assumption is supported by the fact that $\Delta \delta_{Si}^0$ is correlated with Δl and l, where Δl is a measure of silicon deviation from the equatorial plane formed by three atoms of the substituents (O, O, C) and l stands for N \rightarrow Si bond lengths.

$\Delta \delta_{\rm Si}^0 = -77.7 + 142.0 \ \Delta l$	r = 0.999 S = 0.13
$\Delta \delta_{\rm Si}^0 = -134.0 + 40.2 l$	r = 0.993 S = 1.5

X-ray analysis performed on crystals yielded the values of Δl and l for N-substituents H [1], CH₃ and (CH₃)₃C [9]. Thus, the changes in silicon hybridiza-

TABLE 6
CALCULATED $\Delta \delta_{Si}^{0}$ AND $\Delta \delta_{C_{p}}^{0}$ VALUES FOR (Ar) ₂ Si(OCH ₂ CH ₂) ₂ NR COORDINATE FORMS (ppm)

Ar	R	$\Delta \delta_{Si}^{0}$	$\Delta \delta^{0}_{Cp}$	
C ₆ H ₅	н	42.1	-5.8	
C ₆ H ₅	CH ₃	-23.9	-3.5	
4-CIC ₆ H ₄	CH ₃	-32.0	-5.3	
C ₆ H ₅	C_2H_51	16.7	-2.7	
C ₆ H ₅	n-C ₃ H ₇	13.7	-2.5	
C ₆ H ₅	n-C4H9	-14.0	-2.4	
C ₆ H ₅	t-C4H9	-8.0	-1.7	
2-C4H3O	CH ₃	-24.7		

tion from sp^3 to sp^3d in these compounds is accompanied by the shift of ²⁹Si signal to higher field by ≈ 78 ppm.

Correlation is also noted between $\Delta \delta_{Cp}^0$ values for the *para*-carbon in the phenyl ring and the values of $\Delta \delta_{Si}^0$ and Δl :

$\Delta \delta^0_{C_p} = -0.86 \pm 0.11 \ \Delta \delta^0_{\rm Si}$	r = 0.995 s = 0.06
$\Delta \delta^0_{\mathbf{C}_p} = -10.1 + 17.3 \ \Delta l$	<i>r</i> = 0.999 <i>s</i> = 0.04

It is apparent that altered hybridization of the silicon atom (and formation of the donor-acceptor bond $N \rightarrow Si$) brings about a significant increase in donor capacity of the substituent (Ph)Si(OCH₂CH₂)₂NR.

Consequently, changes in the geometry of the coordinated form of I upon transition from NH to tert-butyl substituents are largely determined by the nature of the N-substituents because of their different induction and steric effects.

Quantitation of these two parameters for the N-substituents is possible with the aid of two factors, i.e., correlation between $\Delta \delta_{Si}^0$ values, E_S and σ^* constants:

$$\Delta \delta_{\rm Si}^0 = -18.6 + 2.6E_{\rm S} - 61.0\sigma^* \qquad r = 0.995 \\ s = 1.85$$

The latter equation may be used to predict the geometry of the coordinated form of I for various N-substituents.

Experimental

¹H, ¹³C, ²⁹Si NMR spectra were recorded with a WH-90/DS spectrometer operating in the pulsed Fourier transform mode using proton decoupling (for ¹³C and ²⁹Si). Tube diameter was 5 mm for ¹H and 10 mm for ¹³C and ²⁹Si. The pulse length for ¹H was 1.5 μ sec, for ¹³C and ²⁹Si, 5 μ sec. Delay time was 3 sec for ¹³C and ²⁹Si. The compounds were used as 0.01 *M* (¹H) or 0.1 *M* (¹³C and ²⁹Si) solutions in CDCl₃. The accuracy of chemical shift measurements was ±0.01 ppm. (¹H) and ±0.1 pm. (¹³C and ²⁹Si) with tetramethylsilane used as internal standard.

Enthalpy and entropy variation and equilibrium constants were estimated in the -50 to +50 °C range, as outlined in ref. 10.

The title compounds I were synthesized by reacting diaryldiethoxysilanes with the appropriate dialkanolamines in the presence of sodium alcoholate. Purification of I was achieved through distillation in vacuo or by crystallization from n-hexane. The synthetic procedure and the properties of I will be described elsewhere.

Similarly, the model compound $(C_6H_5)_2$ Si $[OCH_2CH_2N(CH_3)_2]_2$ was synthesized from diphenyldimethoxysilane and dimethylaminoethanol (b.p. 210°C/3 mmHg, n_D^{20} 1.5185).

Acknowledgements

We are very grateful to N. Erchak and O. Pudova who provided the samples of 2,2-di(2-furyl)-6-methyl-1,3-dioxa-6-azo-2-silacyclooctane and di(2-furyl)-diethoxysilane.

References

- 1 J.J. Daly and F. Sanz, J. Chem. Soc., Dalton Trans., (1974) 2051.
- 2 O.A. Dyachenko, L.O. Atovmyan, S.M. Aldoshin, N.G. Komalenkova, A.G. Popov, V.V. Antipova and Ye.A. Chernyshev, Izv. Akad. Nauk SSSR, Chem. Ser., (1975) 1081.
- 3 O.A. Dyachenko, L.O. Atovmyan, S.M. Aldoshin, T.L. Krasnova, V.V. Stepanov, Ye.A. Chernyshev, A.G. Popov and V.V. Antipova, Izv. Akad. Nauk SSSR, Chem. Ser., (1974) 2648.
- 4 A.A. Kemme and J.J. Bleidelis. II All-Union Conference on Organic Crystallochemistry (Abstracts), Zvenigorod, 1978, 75.
- 5 V.A. Pestunovich, M.G. Voronkov, E.E. Liepins, S.N. Tandura, G.I. Zelchan, I.S. Jankovska, I.P. Urtane and E.J. Lukevics, All.Union Symposium on the Structure and Reactivity of Organosilicon Compounds (Abstracts), Irkutsk, 1977, 36.
- 6 M.G. Voronkov, V.A. Pestunovich, E.E. Liepins, S.N. Tandura, G.I. Zelchan and E.Y. Lukevics, Izv. Akad. Nauk Latv. SSR, Chem. Ser., (1978) 114.
- 7 M.G. Voronkov and V.M. Dyakov, Silatranes, Nauka, Novosibirsk, 1978, 69-70.
- 8 A. Zschunke, A. Tzschach and J. Jurkschat, J. Organometal. Chem., 112 (1976) 273.
- 9 A.A. Kemme, J.J. Bleidelis, I.P. Urtane, G.I. Zelchan and E. Lukevics, J. Organometal. Chem., 202 (1980) 115.
- 10 S.V. Zenin and G.B. Sergeyev, Jh. Fiz. Khim., (1974) 838.